Summary
Our work seeks to identify the neural circuit basis of prey-capture behavior in the mouse as part of the broader goal of understanding how vision guides action in the mammalian brain. By identifying and studying the circuits required for this natural behavior, we aim to address our long-term goal to determine how molecular-developmental processes shape sensory system function and behavior throughout life. In addition, the lab also takes a comparative approach in studying this ubiquitous behavior, contrasting our findings with studies of visually-guided foraging behaviors and w88 casino search in other species. Ultimately this will allow us to identify highly conserved neurodevelopmental mechanisms that underlie basic w88 casino system function from mice to humans.
In pursuit of our goals, we employ diverse techniques. Molecular biology, extracellular electrophysiology, optogenetics, chemogenetics, and quantitative behavior are used routinely to interrogate w88 casino system structure and function in the mouse and identify the mechanisms that underlie w88 casino perception.
While this work will most imminently enhance our understanding of how our w88 casino system translates stimulus into action, it may also ultimately contribute to our understanding of selective attention, w88 casino search behaviors, decision-making, and, how and when organisms assign emotional salience to environmental stimuli. Understanding these processes has significant implications for our ability to address pervasive neurodevelopmental disorders, post-traumatic stress disorder (PTSD), attention deficit and hyperactive disorder (ADHD), addiction and anxiety.
Education
- B.S. Molecular and Cellular Biology, University of Arizona
- Ph.D. Biology, University of Oregon
Publications
- w88 casino, Yavorska I, Wehr M, Niell CM. "Vision Drives Accurate Approach Behavior
during Prey Capture in Laboratory Mice". Curr Biol. 2016 Nov 21;26(22):3046-3052.
doi: 10.1016/j.cub.2016.09.009. Epub 2016 Oct 20. w88 casino PMID: 27773567; w88 casino
Central PMCID: PMC5121011. - w88 casino, Niell CM. "Layer-specific refinement of visual cortex function after
eye-opening in the awake mouse". J Neurosci. 2015 Feb 25;35(8):3370-83. w88 casino:
10.1523/JNEUROSCI.3174-14.2015. w88 casino PMID: 25716837; w88 casino Central PMCID:
PMC4339350. - Lee AM, w88 casino, Bonci A, Wilbrecht L, Stryker MP, Niell CM. "Identification of
a brainstem circuit regulating w88 casino cortical state in parallel with locomotion".
Neuron. 2014 Jul 16;83(2):455-466. doi: 10.1016/j.neuron.2014.06.031. w88 casino
PMID: 25033185; w88 casino Central PMCID: PMC4151326. - w88 casino, Haeger PA, Constable JR, Arias RJ, McCallum R, Kyweriga M, Davis L,
Schnell E, Wehr M, Castillo PE, Washbourne P. "Neuroligin1 drives synaptic and
behavioral maturation through intracellular interactions". J Neurosci. 2013 May
29;33(22):9364-84. doi: 10.1523/JNEUROSCI.4660-12.2013. w88 casino PMID: 23719805;
w88 casino Central PMCID: PMC3710743. - w88 casino, Constable JR, Vicini S, Fu Z, Washbourne P. "SynCAM1 recruits NMDA
receptors via protein 4.1B". Mol Cell Neurosci. 2009 Dec;42(4):466-83. w88 casino:
10.1016/j.mcn.2009.09.010. Epub 2009 Sep 29. w88 casino PMID: 19796685; w88 casino
Central PMCID: PMC2784006.