Summary
Daniel was born and raised in Los Alamos, New Mexico. After graduating from Los Alamos High School, he received a BS in Geophysics from Stanford and both an MS and a PhD in Earth w88 mobile from Scripps Institution of Oceanography at UC San Diego. Daniel returned to Los Alamos in 2018 as the Richard P. Feynman Postdoctoral Fellow and became an Assistant Professor in the Jackson School of Geosciences at UT Austin in 2020.
Daniel arrived at the University of Nevada, Reno in 2022, where his w88 mobile is a perfect fit for the overarching mission of the Nevada Seismological Laboratory. In 2023, Daniel was awarded the Charles F. Richter Early Career Award from the Seismological Society of America and the Mousel-Feltner Award for w88 mobile Excellence from the College of Science.
Daniel loves to be outside, especially in the mountains, and spends his free time exploring the eastern Sierra by way of hiking, biking, rock climbing, skiing, and trail running.
w88 mobile interests
Dr. w88 mobile's research focuses on developing and applying new techniques to analyze large datasets of seismic waveforms in order to better understand earthquake rupture processes and their relation to seismic hazards. His research team at the University is broadly interested in leveraging concepts from big data and scientific machine learning alongside high-fidelity physical modeling in order to advance earthquake science.
Topics of particular interest include to Dr. w88 mobile's research team include:
- Nevada seismicity, tectonics, and w88 mobile sequences
- w88 mobile source properties (magnitude, stress drop, and radiated energy estimates)
- w88 mobile nucleation and rupture dynamics
- Stress transfer and w88 mobile triggering
- w88 mobile early warning systems
- Ground motion prediction and hazard analysis
- Forensic seismology and nuclear monitoring
Courses taught
- GEOL 479/679: Python for Earth w88 mobile
- GE 479/679: w88 mobile Engineering
Education
- Ph.D., Earth w88 mobile, University of California - San Diego, 2017
- M.S., Earth w88 mobile, University of California - San Diego, 2015
- B.S., Geophysics, Stanford University, 2013
Selected publications
- w88 mobile, D. T., and Y. Ben-Zion. Coherent variations in the productivity of w88 mobile sequences in California and Nevada, The Seismic Record, 3 (4): 322–331.
- Umlauft, J., C. W. Johnson, P. Roux, D. T. w88 mobile, A. Lecointre, A. Walpersdorf, U. Nanni, F. Gimbert, B. Rouet-Leduc, C. Hulbert, and P. A. Johnson (2023). Mapping glacier basal sliding applying machine learning. Journal of Geophysical w88 mobile – Earth’s Surface, 128, e2023JF007280.
- w88 mobile, D. T., W. H. Savran, C. J. Ruhl, and K. D. Smith (2023). Unraveling the evolution of an unusually active w88 mobile sequence near Sheldon, Nevada. Seismica 2 (2).
- Zhang, E., G. Catania, and D. T. w88 mobile (2023). Autoterm: A “big data” repository of glacier termini delineated using deep learning. The Cryosphere, 17, 3485-3503.
- Hua, J. , M. Wu, J. P. Mulholland, J. D. Neelin, V. C. Tsai, and D. T. w88 mobile (2023). Monitoring precipitation with a sense seismic nodal array. Nature Scientific Reports, 13 (11450).
- Bolton, D. C., D. Saffer, C. Marone, and D. T. w88 mobile (2023). Foreshock properties illuminate nucleation processes of slow and fast laboratory earthquakes. Nature Communications.
- w88 mobile, D. T., J. Brune, K. D. Smith, J. N. Louie, and G. M. Kent (2023). The rocks that did not fall: A multidisciplinary analysis of near-source ground motions from an active normal fault. AGU Advances, 4, e2023AV000885.
- Igonin, N., D. T. w88 mobile, K. Gonzalez, and D. W. Eaton (2023). Spectral characteristics of hydraulic-fracturing induced seismicity can distinguish between activation of faults and fractures. Seismological w88 mobile Letters, 1-16.
- Cochran, E. S., M. T. Page, N. J. van der Elst, Z. E. Ross, and D. T. w88 mobile (2023). Fault roughness at seismogenic depths and links to w88 mobile behavior. The Seismic Record, 3 (1): 37–47.
- w88 mobile, D. T., C. J. Chamberlain, A. Lomax, and A. Savvaidis (2022). GrowClust3D.jl: A Julia package for the relative relocation of w88 mobile hypocenters using 3D velocity models. Seismological w88 mobile Letters, 94 (1), 443-456.
- Chatterjee, A. C, N. Igonin, and D. T. w88 mobile (2022). A real-time and data-driven ground motion prediction framework for w88 mobile early warning. Bulletin of the Seismological Society of America, 113 (2): 676–689.
- w88 mobile, D. T., L. Fang, J. Ajo-Franklin, A. Nayak, and Z. Li (2022). Preface to the focus section on big data problems in seismology. Seismological w88 mobile Letters, 93 (5): 2423–2425.
- Shearer, P. M., R. A. Abercrombie, and D. T. w88 mobile (2022). Improved stress drop estimates for M 1.5 to 4 earthquakes in Southern California from 1996 to 2019. Journal of Geophysical w88 mobile: Solid Earth, 127 (7), e2022JB024243.
- Bolton, D. C., S. Sharan, G. McLaskey, J. Riviére, P. Shokouhi, D. T. w88 mobile, and C. Marone (2022). The high-frequency signature of slow and fast laboratory earthquakes. Journal of Geophysical w88 mobile: Solid Earth, 127, e2022JB024170.
- Arrowsmith, S. J., D. T. w88 mobile, J. MacCarthy, K. J. Bergen, D. Lumley, and B. M. Magnani (2022). Big data seismology. Reviews of Geophysics, 60, e2021RG000769.
- w88 mobile, D. T. (2022). Resolving differences in the rupture properties of M5 earthquakes in California using Bayesian source spectral analysis. Journal of Geophysical w88 mobile: Solid Earth, 127 (4), e2021JB023526.
- Corradini, M., I. W. McBrearty, D. T. w88 mobile, C. Satriano, P. A. Johnson, and P. Bernard (2022). Investigating the influence of w88 mobile source complexity on back-projection images using convolutional neural networks. Geophysical Journal International, ggac026.
- Saad, O. M., Y. Chen, D. T. w88 mobile, M. S. Soliman, L. Samy, A. Savvaidis, M. A. Khamis, A. G. Hafez, S. Fomel, and Y. Chen (2022). Machine learning for fast and reliable source-location estimation in w88 mobile early warning. IEEE Transactions on Geoscience and Remote Sensing, 19, pp.1-5.
- Wang, W., P. M. Shearer, J. Vidale, X. Xu, D. T. w88 mobile, and Y. Fialko (2022). Tidal modulation of seismicity at the Coso geothermal field. Earth and Planetary Science Letters, 579, 117335.
- Chu, S. X., V. C. Tsai, D. T. w88 mobile, and G. Hirth (2021). Fault interactions enhance high-frequency w88 mobile radiation. Geophysical w88 mobile Letters, 48, e2021GL095271.
- Abercrombie, R. E., D. T. w88 mobile, P. M. Shearer, X. Chen, J. Zhang, C. N. Pennington, J. L. Hardebeck, T. H. W. Goebel, and C. J. Ruhl (2021). Does w88 mobile stress drop increase with depth in the crust? Journal of Geophysical w88 mobile: Solid Earth, 126, e2021JB022314.
- w88 mobile, D. T., S. X. Chu, and V. C. Tsai (2021). w88 mobile source complexity controls the frequency-dependence of near-source radiation patterns. Geophysical w88 mobile Letters, 48, e2021GL095022.
- Tsai, V. C., G. Hirth, D. T. w88 mobile, and S. X. Chu (2021). Impact versus frictional w88 mobile models for high-frequency radiation in complex fault zones. Journal of Geophysical w88 mobile: Solid Earth 126, e2021JB022313.
- Skoumal, R. J., and D. T. w88 mobile (2021). The proliferation of induced seismicity in the Permian Basin. Journal of Geophysical w88 mobile: Solid Earth, 126, e2021JB021921.
- w88 mobile, D. T., and A. Savvaidis (2021). Source spectral properties of earthquakes in the Delaware Basin of West Texas. Seismological w88 mobile Letters, 92 (4): 2477–2489.
- Wang, T., D. T. w88 mobile, and Y. Lin (2021). SeismoGen: Seismic waveform synthesis using generative adversarial networks. Journal of Geophysical w88 mobile: Solid Earth, 126, e2020JB020077.
- w88 mobile, D. T., I. W. McBrearty, D. C. Bolton, R. A. Guyer, C. Marone, and P. A. Johnson (2020). The spatiotemporal evolution of granular microslip precursors to laboratory earthquakes. Geophysical w88 mobile Letters, 47 (16), e2020GL088404.
- Ross, Z. E., E. S. Cochran, D. T. w88 mobile, and J. D. Smith (2020). 3D fault architecture controls the dynamism of w88 mobile swarms. Science, 368 (6497), 1357–1361.
- w88 mobile, D. T. (2020). Stress drop and source scaling of the 2019 Ridgecrest, California, w88 mobile sequence. Bulletin of the Seismological Society of America, 110 (4), 1859-1871.
- w88 mobile, D. T., Z. E. Ross, and P. A. Johnson (2020). Imaging stress and faulting complexity through w88 mobile waveform similarity. Geophysical w88 mobile Letters, 47 (1), e2019GL085888.
- Ross, Z. E., D. T. w88 mobile, K. Azizzadenesheli, and A. Anandkumar (2020). Directivity modes of w88 mobile populations with unsupervised learning. Journal of Geophysical w88 mobile: Solid Earth, 125 (2), e2019JB018299.
- Qin, Y., X. Chen, J. I. Walter, J. Haffener, D. T. w88 mobile, B. M. Carpenter, M. Weingarten, and F. Kolawole (2019). Deciphering the stress state of seismogenic faults in Oklahoma and Southern Kansas based on an improved stress map. Journal of Geophysical w88 mobile: Solid Earth, 124, 12920– 12934.
- w88 mobile, D. T., and Z. E. Ross (2019). Pervasive foreshock activity across Southern California. Geophysical w88 mobile Letters, 46 (15), 8772-8781.
- Ross, Z. E., D. T. w88 mobile, Hauksson, E., and Shearer, P. M. (2019). Searching for hidden earthquakes in Southern California. Science, 364(6442), 767–771.
- w88 mobile, D. T., M. T. Page, S. E. Minson, and E. S. Cochran (2019). Peak ground displacement saturates exactly when expected: Implications for w88 mobile early warning. Journal of Geophysical w88 mobile: Solid Earth, 124 (5), 4642– 4653.
- Shearer, P. M., R. A. Abercrombie, D. T. w88 mobile, and W. Wang (2019). Comparing EGF methods for estimating corner frequency and stress drop from P-wave spectra. Journal of Geophysical w88 mobile: Solid Earth, 124 (4), 3966-3986.
- Kong, Q., D. T. w88 mobile, Z. E. Ross, M. J. Bianco, B. J. Meade, and P. Gerstoft (2019). Machine learning in seismology – Turning data into insights. Seismological w88 mobile Letters, 90(1), 3-14.
- Koper, K. D., K. L. Pankow, J. C. Pechmann, J. M. Hale, R. Burlacau, W. L. Yeck, H. M. Benz, R. B. Hermann, D. T. w88 mobile, and P. M. Shearer (2018). Afterslip enhanced aftershock activity during the 2017 w88 mobile sequence near Sulphur Peak, Idaho. Geophysical w88 mobile Letters, 45, 5352–5361.
- w88 mobile, D. T., and P. M. Shearer (2018). Strong correlation between stress drop and peak ground acceleration for recent M1-M4 seismicity in the San Francisco Bay Area. Bulletin of the Seismological Society of America, 108 (2), 929-945.
- w88 mobile, D. T., S. L. Dougherty, E. S. Cochran, and P. M. Shearer (2017). Source spectral properties of small to moderate earthquakes in Southern Kansas. Journal of Geophysical w88 mobile: Solid Earth, 122 (10), 8021–8034.
- w88 mobile, D. T., and P. M. Shearer (2017). Application of an improved spectral decomposition method to examine w88 mobile source scaling in Southern California. Journal of Geophysical w88 mobile: Solid Earth, 122 (4), 2890–2910.
- w88 mobile, D. T., and P. M. Shearer (2017). GrowClust: A hierarchical clustering algorithm for relative w88 mobile relocation, with application to the Spanish Springs and Sheldon, Nevada, w88 mobile sequences. Seismological w88 mobile Letters, 88 (2A), 379–391.